On transformations between Gabor frames and wavelet frames
نویسندگان
چکیده
We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames.
منابع مشابه
Image processing by alternate dual Gabor frames
We present an application of the dual Gabor frames to image processing. Our algorithm is based on finding some dual Gabor frame generators which reconstructs accurately the elements of the underlying Hilbert space. The advantages of these duals constructed by a polynomial of Gabor frame generators are compared with their canonical dual.
متن کاملFrom Dual Pairs of Gabor Frames to Dual Pairs of Wavelet Frames and vice Versa Ole Christensen and Say
We discuss an elementary procedure that allows us to construct dual pairs of wavelet frames based on certain dual pairs of Gabor frames and vice versa. The construction preserves tightness of the involved frames. Starting with Gabor frames generated by characteristic functions the construction leads to a class of tight wavelet frames that include the Shannon (orthonormal) wavelet, and applying ...
متن کاملDigital Gabor Filters with Mra Structure*
Digital Gabor filters are indispensable tools of local time-frequency analysis in signal processing. With strong orientation selectivity, discrete (tight) Gabor frames generated by 2D Gabor filters also see their wide applications in image processing and volume data processing. However, owing to the lack of multi-scale structures, discrete Gabor frames are less effective than multiresolution an...
متن کاملDigital Gabor Filters Do Generate MRA-based Wavelet Tight Frames
Gabor frames, especially digital Gabor filters, have long been known as indispensable tools for local time-frequency analysis of discrete signals. With strong orientation selectivity, tensor products discrete (tight) Gabor frames also see their applications in image analysis and restoration. However, the lack of multi-scale structures existing in MRA-based wavelet (tight) frames makes discrete ...
متن کاملDirectional Frames for Image Recovery: Multi-scale Discrete Gabor Frames
Sparsity-driven image recovery methods assume that images of interest can be sparsely approximated under some suitable system. As discontinuities of 2D images often show geometrical regularities along image edges with different orientations, an effective sparsifying system should have high orientation selectivity. There have been enduring efforts on constructing discrete frames and tight frames...
متن کامل